数列求和用的 裂项公式

2个回答

  • 你看看这个吧,希望对你有帮助.

    裂项法求和

    这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:

    (1)1/n(n+1)=1/n-1/(n+1)

    (2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]

    (3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]

    (4)1/(√a+√b)=[1/(a-b)](√a-√b)

    (5) n·n!=(n+1)!-n!

    [例1] 【分数裂项基本型】求数列an=1/n(n+1) 的前n项和.

    an=1/n(n+1)=1/n-1/(n+1) (裂项)

    则 Sn=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)

    = 1-1/(n+1)

    = n/(n+1)

    [例2] 【整数裂项基本型】求数列an=n(n+1) 的前n项和.

    an=n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3(裂项)

    则 Sn=[1×2×3-0×1×2+2×3×4-1×2×3+……+n(n+1)(n+2)-(n-1)n(n+1)]/3(裂项求和)

    = (n-1)n(n+1)/3

    小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了.只剩下有限的几项.

    注意: 余下的项具有如下的特点

    1余下的项前后的位置前后是对称的.

    2余下的项前后的正负性是相反的.

    易错点:注意检查裂项后式子和原式是否相等,典型错误如:1/(3×5)=1/3-1/5(等式右边应当除以2)

    附:数列求和的常用方法:

    公式法、裂项相消法、错位相减法、倒序相加法等.(关键是找数列的通项结构)

    1、分组法求数列的和:如an=2n+3n

    2、错位相减法求和:如an=n·2^n

    3、裂项法求和:如an=1/n(n+1)

    4、倒序相加法求和:如an= n

    5、求数列的最大、最小项的方法:

    ① an+1-an=…… 如an= -2n2+29n-3

    ② (an>0) 如an=

    ③ an=f(n) 研究函数f(n)的增减性 如an= an^2+bn+c(a≠0)

    6、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求

    (1)当 a1>0,d