解题思路:根据旋转的性质,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变,根据图形求出旋转的角度,即可得出三角形的形状.
等边三角形.
理由:由题意可知:∠APD=60°,
∴△PAD是等边三角形,
∴∠DAP=∠PDA=60°,
∴∠PDC=∠PAE=30°,
∴∠DAE=∠DAP-∠PAE=30°,
∴∠PAB=30°,即∠BAE=60°,
又∵CD=AB=EA,
∴△ABE是等边三角形,
故答案为等边三角形.
点评:
本题考点: 旋转的性质;全等三角形的判定与性质;等边三角形的判定;矩形的性质.
考点点评: 本题主要考查了图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变,难度适中.