证明:作CD的中点E,连接AE.
∵AD⊥AC∴∠DAC=90°
∵DE=EC∴AE=CE=1/2CD∴∠CAE=∠C∵∠AED=∠CAE+∠C∴∠AED=2∠C
∵CD=2AB∴AB=AE=1/2CD∴∠B=∠AED
∴∠B=2∠C