集合部分练习题

1个回答

  • 19、由 x^2+2x+2=(x+1)^2+1≥1 得 A={y | y≥1},

    由 -x^2+4x+7 = -(x-2)^2+11 ≤ 11 得 B={y | y ≤ 11},

    因此 A∩B={y | 1 ≤ y ≤ 11},A∪B={y | y ≤ 11 或 y ≥ 1}= R .

    20、a^2+2a-3=5 ,且 |2a-1| ≠ 5 ,

    解得 a = 2 或 -4 ,

    但 a = -4 时 A={9,2},U={2,3,5},A 不是 U 的子集,因此舍去,

    所以 a = 2 .

    21、A={x | x 1 },因此 CRA ={x | 0 ≤ x ≤ 1}.

    22、AUB=A ,说明 B 是 A 的子集,因此 x^2=3 或 x^2=x ,

    解得 x = ±√3 或 x = 0 或 x = 1 ,但 x = 1 时不满足元素的互异性,

    所以 x = -√3 或 0 或 √3 .选 C

    23、p^2-4q>0 ,说明方程的判别式为正数,因此方程有两个不相等的实根,T 有两个元素,

    T 交 A 等于空集,说明 T 的元素不是 1、3、5、7、9 ,

    T 交 B 等于 T ,说明 T 的元素是 1 或 4 或 7 或 10 ,

    以上条件综合,可得 T={4,10},

    因此由根与系数的关系得 p = -(4+10)= -14,q = 4*10=40 .