求证:△AFB≌△EFC.证明:平行四边形ABCD中:AB∥CD,且AB=CD,∠BAE=∠CEA,∵CE=AB,∠AFB=∠EFC,∴△AFB≌△EFC.点评:此题主要考查了全等三角形的性质与判定、平行四边形的性质,首先利用平行四边形的性质构造全等...
已知:平行四边形ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.
1个回答
相关问题
-
如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.
-
如图,延长▱ABCD的边DC到E,使CE=CD,连接AE交BC于点F.
-
平行四边形ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.若角AFC=2角D,连接AC、BE试说明;四
-
如图将平行四边形ABCD的边DC延长到点E,是CE=DC,连接AE,交BC于点F求三角形ABF全等三角形ECF
-
如图,已知E为平行四边形ABCD中DC边的延长线的一点,且CE=DC,连接AE,分别交BC、BD于点F、G,连接AC交B
-
如图,已知E为平行四边形ABCD中DC边的延长线上的一点,且CE=DC,连接AE分别交BC、BD于点F、G.
-
如图已知点E是平行四边形ABCD中BC边的中点连接AE并延长AC交DC的延长线于点F.
-
已知:如图,E为▱ABCD中DC边的延长线上一点,且CE=DC,连接AE,分别交BC、BD于点F、G,连接AC交BD于O
-
如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.
-
如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.