因为 cos(x+π/2+kπ)=±sinx 所以 ψ+π/3 =π/2+kπ 这里是怎么得来的
1个回答
因为 cos(x+π/2)=-sinx sin(x+kπ)=±sinx
所以
cos(x+π/2+kπ)=±sinx
所以ψ+π/3 =π/2+kπ
相关问题
函数y=3cos(2x-[π/3]),x∈R的减区间为[kπ+π6,kπ+2π3](k∈z)[kπ+π6,kπ+2π3]
2kπ和kπ怎么区别sinx=0x=kπsin(x/2)=0x=2kπ 怎么得出是2kπ还是kπ,和周期有关吗?
①x≠kπ+π/2.② x≠kπ.③ 2kπ-2π/3≤x≤2kπ+2π/3 .这三个交集是什么,
函数y=lg(sinx-cosx-1)的定义域为{x|2kπ+π2<x<2kπ+π,k∈Z}{x|2kπ+π2<x<2k
6cos(2kπ+π/3)-2sin(2kπ+π/6)+3tan(2kπ) k€Z
化简[sin(k-5π)cos(-2/π-k)cos(8π-k)]/[sin(k-3π/2)sin(-k-4π)]
(2011•闸北区二模)函数y=sinx-cos(π-x)(x∈R)的单调递增区间为[2kπ−3π4,2kπ+π4],k
已知x∈(2kπ-[3/4]π,2kπ+[π/4])(k∈Z),且cos(π4−x)=−35,则cos2x的值是( )
函数y=2sin(2x−π6)的单调递增区间是[kπ-[π/6],kπ+[π/3]],k∈z[kπ-[π/6],kπ+[
函数y=根号下(1-2sinx)的定义域为2kπ-7π/6,2kπ+π/6] k∈z ,那么2kπ-7π/6,2kπ+π