因为f(x)=ax*3+bx*2+cx为奇函数,所以-f(x)=f(-x) 得b=0
又f(1)=2,f'(1)=0 所以a+c=2 3a+c=0
解得a=-1 c=3
所以f(x)=-x^3+3x
所以g(x)=-x^2+3+(k+1)lnx (x>0)
g'(x)=-2x+(k+1)/x 当g'(x)=0时x=((k+1)/2)^(1/2) (k>=-1)
所以g(x)在(0,((k+!)/2)^(1/2))递增 在((k+1)/2)^(1/2),正无穷)递减
当k
因为f(x)=ax*3+bx*2+cx为奇函数,所以-f(x)=f(-x) 得b=0
又f(1)=2,f'(1)=0 所以a+c=2 3a+c=0
解得a=-1 c=3
所以f(x)=-x^3+3x
所以g(x)=-x^2+3+(k+1)lnx (x>0)
g'(x)=-2x+(k+1)/x 当g'(x)=0时x=((k+1)/2)^(1/2) (k>=-1)
所以g(x)在(0,((k+!)/2)^(1/2))递增 在((k+1)/2)^(1/2),正无穷)递减
当k