如图,已知AC为正方形ABCD的对角线,点P为AC上任意一点,过点P作PE⊥BP交CD于点E,BE交AC于点F.当AP:

1个回答

  • 作∠ABG=∠CBF,使G、F在AB的两侧且BG=BF.令AP=4t、CF=3t.

    ∵ABCD是正方形,∴DC=AB=CB、BC⊥CE、∠ABC=90°、∠BAP=∠ACD=∠BCF=45°.

    ∵BC⊥CE,又PE⊥BP,∴B、C、E、P共圆,∴∠PBE=∠ACD=45°.

    ∵∠ABC=90°、∠PBE=45°,∴∠CBE+∠ABP=∠ABC-∠PBE=45°,而∠ABG=∠CBE,

    ∴∠ABG+∠ABP=45°,∴∠PBG=45°.

    ∵AB=CB、BG=BF、∠ABG=∠CBF,∴△ABG≌△CBF,∴AG=CF、∠BAG=∠BCF=45°.

    ∵∠BAP=∠BAG=45°,∴∠PAG=90°,又AP=4t、CF=3t,∴PG=5t.

    ∵BG=BF、BP=BP、∠PBG=∠PBF=45°,∴△PBG≌△PBF,∴PG=PF=5t.

    ∵ABCD是正方形,∴CE∥AB,∴CE/AB=CF/AF=CF/(AP+PF)=3t/(4t+5t)=1/3,

    ∴CE/DC=1/3,∴CE/(ED+CE)=1/3,∴CE/ED=1/(3-1)=1/2,∴ED=2CE.