作∠ABG=∠CBF,使G、F在AB的两侧且BG=BF.令AP=4t、CF=3t.
∵ABCD是正方形,∴DC=AB=CB、BC⊥CE、∠ABC=90°、∠BAP=∠ACD=∠BCF=45°.
∵BC⊥CE,又PE⊥BP,∴B、C、E、P共圆,∴∠PBE=∠ACD=45°.
∵∠ABC=90°、∠PBE=45°,∴∠CBE+∠ABP=∠ABC-∠PBE=45°,而∠ABG=∠CBE,
∴∠ABG+∠ABP=45°,∴∠PBG=45°.
∵AB=CB、BG=BF、∠ABG=∠CBF,∴△ABG≌△CBF,∴AG=CF、∠BAG=∠BCF=45°.
∵∠BAP=∠BAG=45°,∴∠PAG=90°,又AP=4t、CF=3t,∴PG=5t.
∵BG=BF、BP=BP、∠PBG=∠PBF=45°,∴△PBG≌△PBF,∴PG=PF=5t.
∵ABCD是正方形,∴CE∥AB,∴CE/AB=CF/AF=CF/(AP+PF)=3t/(4t+5t)=1/3,
∴CE/DC=1/3,∴CE/(ED+CE)=1/3,∴CE/ED=1/(3-1)=1/2,∴ED=2CE.