B
令F(x)=xf(x),
则F′(x)=xf′(x)+f(x),由xf′(x)>-f(x),
得xf′(x)+f(x)>0,
即F′(x)>0,
所以F(x)在R上为递增函数.
因为a>b,所以af(a)>bf(b).