(x+1/y)(y+1/z)(z+1/x)=28/3
将其展开为
xyz+x+y+z+1/x+1/y+1/z+1/xyz=28/3①
将已知的三个因式相加得到
xyz+x+y+z+1/x+1/y+1/z=22/3②
①-②=2
即xyz+1/xyz=2
假设xyz=a
则a+1/a=2
得 a2-2a+1=0(a2表示a的平方)
得 a=1
即 x*y*z=1
A/x-1+B/x+2=(Ax+2A+Bx-B)/(x-1)(x+2)
=[(A+B)x+2A-B]/(X-1)(X+2)
(2X-3)/(X-1)(X+2)=[(A+B)X+2A-B]/(X-1)(X+2)
{A+B=2
{2A-B=-3
所以A=-1/3 B=7/3