∵∠ABC+∠ACB+∠A=180
∴∠ABC+∠ACB=180-∠A
∵BO平分∠DBC,∠DBC=180-∠ABC
∴∠OBC=∠DBC/2=90-∠ABC/2
∵CO平分∠BCE,∠BCE=180-∠ACB
∴∠OCB=∠BCE/2=90-∠ACB/2
∵∠BOC+∠OBC+∠OCB=180
∴∠BOC=180-(∠OBC+∠OCB)
=180-(90-∠ABC/2+90-∠ACB/2)
=(∠ABC+∠ACB)/2
=(180-∠A)/2
=90-∠A/2
∵∠ABC+∠ACB+∠A=180
∴∠ABC+∠ACB=180-∠A
∵BO平分∠DBC,∠DBC=180-∠ABC
∴∠OBC=∠DBC/2=90-∠ABC/2
∵CO平分∠BCE,∠BCE=180-∠ACB
∴∠OCB=∠BCE/2=90-∠ACB/2
∵∠BOC+∠OBC+∠OCB=180
∴∠BOC=180-(∠OBC+∠OCB)
=180-(90-∠ABC/2+90-∠ACB/2)
=(∠ABC+∠ACB)/2
=(180-∠A)/2
=90-∠A/2