设数列项数为n
则:a1+a2+a3+a4=24,a(n-3)+a(n-2)+a(n-1)+an=136
又等差数列
故:a1+an= a2+a(n-1)= a3+a(n-2)= a4+ a(n-3)=(136+24)/4=40
又:Sn=n(a1+an)/2=320
即:40n/2=320
故:n=16
设数列项数为n
则:a1+a2+a3+a4=24,a(n-3)+a(n-2)+a(n-1)+an=136
又等差数列
故:a1+an= a2+a(n-1)= a3+a(n-2)= a4+ a(n-3)=(136+24)/4=40
又:Sn=n(a1+an)/2=320
即:40n/2=320
故:n=16