圆心c在直线x-y=0上,令圆心坐标(m,m),圆c与y轴相切,所以半径|m|
被直线2x-y=0截得的弦长为2√5,则弦长之半为√5
根据点线距离公式,圆心到弦的距离 d = |2m-m|/√(2^2+1^2) = |m|/√5
又,根据勾股定理:
{ |m|/√5 }^2 + (√5)^2 = |m|^2
即m^2/5+5=m^2
m=±5/2
圆方程:(x-5/2)^2+(y-5/2)^2 = 25/4 ,或:(x+5/2)^2+(y+5/2)^2 = 25/4
圆心c在直线x-y=0上,令圆心坐标(m,m),圆c与y轴相切,所以半径|m|
被直线2x-y=0截得的弦长为2√5,则弦长之半为√5
根据点线距离公式,圆心到弦的距离 d = |2m-m|/√(2^2+1^2) = |m|/√5
又,根据勾股定理:
{ |m|/√5 }^2 + (√5)^2 = |m|^2
即m^2/5+5=m^2
m=±5/2
圆方程:(x-5/2)^2+(y-5/2)^2 = 25/4 ,或:(x+5/2)^2+(y+5/2)^2 = 25/4