A=1/a1+1/a2+……+1/an=1/a1+(1/a1)×q^(-1)+(1/a1)×q^(-2)+……+(1/a1)×q^(-n)
=(1/a1)[1-q^(-n)]/[1-q^(-1)]
B=a1a2a3……an=(a1)^n×q^[1+2+3+……+(n-1)]=(a1)^n×q^[n(n-1)/2]
C=a1+a2+a3+……+an=a1(1-q^n)/(1-q)
C/A=a1(1-q^n)/(1-q)×a1×[1-q^(-1)]/)[1-q^(-n)]
=a1(1-q^n)/(1-q)×a1×[(q-1)/q]/)[(q^n-1)/q^n]
=a1(1-q^n)/(1-q)×a1×(q-1)/(q^n-1)×q^(n-1)
=a1²×q^(n-1)
∴(C/A)^n=a1^(2n)×q^[n(n-1)]
B²=﹛(a1)^n×q^[n(n-1)/2]﹜²=a1^(2n)×q^[n(n-1)]
∴B²=(C/A)^n