原式 = lim(x->0) 2 ∫0,x]e^(t²)dt / e^(x²) = 0/1 = 0
lim(x→0)(∫[0,x]e^(t^2)dt)^2/∫[0,x]e^(2t^2)dt
2个回答
相关问题
-
【急】lim(∫[0,x](e^t^2)dt)^2/(∫[0,x](te^2t^2)dt)很多问题!
-
lim(n,0)x/(1-e^x^2)∫(0,x)e^t^2dt
-
Lim(x趋于0){∫(0~x^2)e^t *dt}/{sinx}^2
-
高数计算,求详解lim(x->∞){ [e^(-x^2)]*[∫(0->x)(t^2)*e^(t^2) dt]}/x,
-
lim (x趋近于无穷大)[∫(0,x)t^2*e^(t^2-x^2)dt]/x
-
求极限x→0 (∫e∧t²dt)²/∫te∧2t²dt上限x下限0
-
1,lim(x,y)→(0,0)xy/2-√(4-xy) 2,lim(x→0)1/x^2∫(0→x)(e^t-1)dt
-
求解∫[0,x]e^(t^2)dt
-
lim(x→∞)[∫(0积到x)(t²*e^t²)dt]/[x*e^x²]=?
-
证明;∫(4,0)e^x(4-x)dx=2∫(2,0)e^(4t-t^2)dt