把等式两边的三项分别展开成麦克劳林级数,再合并同类项就证明了
为什么e^(iπ)=cos(π)+i*sin(π)
2个回答
相关问题
-
为什么sin(23π/5) = sin(3π/5) ,cos(17π/4) = cos(π/4)?
-
sin(π/2+α)·cos(π/2-α)/cos(π+α)+sin(π-α)·cos(π/2+α)/sin(π+α)=
-
(cos[π/12-sinπ12])(cos[π/12+sinπ12])= ___ .
-
cosπ/5*cos2π/5 =(2sinπ/5*cosπ/5*cos2π/5)/(2sinπ/5) =(sin2π/5
-
化简[sin(π/2-α)cos(π/2-α)]/cos(π+α)-[sin(π-α)cos(π/2-α)]/sin(π
-
sin²(a+π)cos(π+a)sin(-a-2π)/sin(π-a)cos³(-a-π) 化简
-
化简[sin(π/2+α)*cos(π/2-α)]/cos(π+α)+[sin(π-α)*cos(π/2+α)]/sin
-
sinπ,sinπ/2,sin3π/2,cosπ/2,cos-π/2,cos/2π/3 等等一系列怎么算
-
(cosπ/8+sinπ/8)(cos^3π/8-sin^3π/8).
-
sin(π-a)*sin((π/2)-a)∕cos(π+a)*cos((π/2)+a)