设数列 log2(an-1) 公差为d
d = long2(an-1)-log2(a(n-1)-1) = log2[ (an-1)/(a(n-1)-1]
所以 (an-1)/(a(n-1)-1) = 2^d
而由a1=3 a2=5,可知 d=log2 4/long2 2 = 2
所以,an-1 = 2^n
2.a(k+1) -ak = 2^(k+1)-2^k =2^k
所以 a2-a1)分之一+(a3-a2)分之一+.+((an+1)—an)分子一
= 1/2+1/2^2+...+1/2^n =1-1/2^n