已知an是攻城不为零的等差数列,bn是等比数列,满足b1=a1^2,b2=a2^2,b3=a3^2

2个回答

  • 设an公差是d,

    因为b1*b3=(b2)^2

    所以a1^2*(a1+2d)^2=[(a1+d)^2]^2

    (a1^2+2a1d)^2[(a1+d)^2]^2=0

    [a1^2+2a1d+(a1+d)^2][a1^2+2a1d-(a1+d)^2]=0

    所以a1^2+2a1d+(a1+d)^2=0,

    或a1^2+2a1d-(a1+d)^2=0

    若a1^2+2a1d-(a1+d)^2=0,则d=0,不合

    若a1^2+2a1d+(a1+d)^2=0,

    即2a1^2+4a1d+d^2=0

    亦即2(a1/d)^2+4a1/d+1=0

    解得a1/d=-1±√2/2

    第一问:

    若a1/d=-1-√2/2

    公比q=b2/b1=(a2/a1)^2=(1+d/a1)^2=(√2-1)^2=3-2√2

    若a1/d=-1+√2/2

    公比q=b2/b1=(a2/a1)^2=(1+d/a1)^2=(-1-√2)^2=3+2√2

    第二问:

    因为a2=-1,

    所以d+(-1-√2/2)d=-1即d=√2

    或d+(-1+√2/2)d=-1即d=-√2

    又因为a1<a2,

    所以d>0

    所以d=√2