设函数为 y(x)=sin² x,求x*点处曲线的斜率.
1,曲线y(x)在 x*处的切线的斜率就是y(x)的导数y’(x)在x处的函数值:y'(x*);
2,计算导数:y'(x) = 2sin x cos x = sin (2x)
3,曲线y(x)在x*处切线的斜率等于:y'(x*);
4,举例:x*=π/2,y'(π/2)=sin π=0,//:x*=π/2 时,y(x)取极值,导数为0,切线与x轴平行://
设函数为 y(x)=sin² x,求x*点处曲线的斜率.
1,曲线y(x)在 x*处的切线的斜率就是y(x)的导数y’(x)在x处的函数值:y'(x*);
2,计算导数:y'(x) = 2sin x cos x = sin (2x)
3,曲线y(x)在x*处切线的斜率等于:y'(x*);
4,举例:x*=π/2,y'(π/2)=sin π=0,//:x*=π/2 时,y(x)取极值,导数为0,切线与x轴平行://