相似的,实对称阵一定相似于对角阵,若A与B有相同特征值,则它们相同于同一个对角阵,所以A与B相似.经济数学团队帮你解答,请及时采纳.谢谢!
A、B为n阶实对称矩阵,且A与B有相同的特征值,问A、B相似吗?为什么?
1个回答
相关问题
-
n阶矩阵A与B相似,则…………n阶矩阵A与B相似,则( ).(a) A,B的特征值相同.(b) A,B有相同的特征向量.
-
设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵
-
线性代数矩阵问题n阶矩阵A与B相似的充分条件是 A与B有相同的特征值且n个特征值互不相同这里 n个特征值互不相同 应该如
-
设A,B均为n阶实对称矩阵,且A正定,证明AB的特征值全为实数
-
线性代数选择题:设A,B为n阶矩阵,A且B与相似,则( ). (A)lAl=lBl (B)A与B有相同的特征值和特征向量
-
已知:A为n阶实正定对称矩阵,B为n阶反实对称矩阵 证:det(A+B)> 0
-
设实对称矩阵A的特征值全大于a,实对称矩阵B的特征值全大于b,证明A+B的特征值全大于a+b.
-
请问实对称矩阵A的特征值全部大于a,实对称矩阵B的特征值全部大于b,证明A+B的特征值大于a+b.怎么证明
-
设A为N阶实矩阵,且有N个正交的特征向量,证明:1A为实对称矩阵;2存在实数k及实对称矩阵B,A+kE=B^2
-
设A,B是n阶实对称矩阵,则正确的是1:A与B等价,则A与B相似2A与B相似,则A与B合同3A与B合同则A与B相似