解题思路:(1)连接OD,求出OE∥AB,根据平行线性质和角平分线定义推出∠COE=∠EOD,证△OCE≌△ODE,推出∠ODB=∠OCE=90°,根据切线的判定推出即可;
(2)证△FDO∽△FCE,推出[FO/FE]=[OD/EC]=[3/4],设FD=x,代入求出x,求出EF,根据锐角三角函数的定义求出即可.
证明:(1)如图,连结OD,
则OD=OC=OB,
∴∠OBD=∠ODB,
又∵E为AC的中点,O是CB的中点,
∴OE∥AB,
∴∠COE=∠CBA,∠EOD=∠ODB,
∴∠COE=∠EOD,
∵在△OCE和△ODE中,
OE=OE
∠COE=∠DOE
OC=OD
∴△OCE≌△ODE(SAS),
∴∠ODB=∠OCE=90°,
即ED⊥OD,
∵OD为半径,
∴DE是圆O的切线.
(2)由OC=OD=OB=3cm,
ED=EC=4cm,
∵∠F=∠F,∠FCE=∠FDO,
∴△FDO∽△FCE,
∴[FO/FE]=[OD/EC]=[3/4],
设FD=x,
x2+9
x+4=[3/4],
x=[72/7],
∴EF=[72/7]+4=[100/7],
∴sin∠F=[CE/EF]=[7/5].
点评:
本题考点: 切线的判定;相似三角形的判定与性质.
考点点评: 本题考查了切线的判定,全等三角形的性质和判定,相似三角形的性质和判定的应用,主要考查学生的推理能力,题目比较好,综合性比较强.