设 x^(1/4)=t,则 x=t^4, √x = t²
lg(t²+t) / lg12 = 4lgt / 2lg9
[lgt + lg(t+1)] / [lg3 + lg4] = lgt / lg3
lg(t+1) / lg4 = lgt / lg3
lg(t+1) / lgt = lg4 / lg3
1+1/t=4/3
t=3
x=3^4=81
设 x^(1/4)=t,则 x=t^4, √x = t²
lg(t²+t) / lg12 = 4lgt / 2lg9
[lgt + lg(t+1)] / [lg3 + lg4] = lgt / lg3
lg(t+1) / lg4 = lgt / lg3
lg(t+1) / lgt = lg4 / lg3
1+1/t=4/3
t=3
x=3^4=81