x2+(2a-1)x-alnx)=-4/x-alnx
x^2+(2a-1)x=-4/x
x^3+(2a-1)x^2+4=0
在x∈[1,3]有两个不的实根.
设y=x^3+(2a-1)x^2+4,在x∈[1,3],它与x轴有两个不同的交点.所以其必须在x∈[1,3]取到极值
y'=3x^2+(4a-2)x=0
x=0或x=(2-4a)/3
x=0不在[1,3]内,不考虑.
所以:(2-4a)/3∈[1,3]
2-4a∈[3,9]
-4a∈[1,7]
a∈[-7/4,-1/4]
同时,两个交点还要在[1,3]内:
所y(1)*y(3)>=0
[1^3+(2a-1)1^2+4][3^3+(2a-1)3^2+4]>=0
(1+2a-1+4)(27+18a-9+4)>=0
(2a+4)(18a+22)>=0
a>=-11/9,或a