f(x)=sin(2x+θ)+√3cos(2x+θ)
=2sin(2x+θ+π/3)图像关于原点对称
则f(0)=2sin(θ+π/3)=0 (1)
又知在[0,π/4]上是减函数
则f(π/4)=2sin(π/2+θ+π/3)=2sin(θ+5π/6)
f(x)=sin(2x+θ)+√3cos(2x+θ)
=2sin(2x+θ+π/3)图像关于原点对称
则f(0)=2sin(θ+π/3)=0 (1)
又知在[0,π/4]上是减函数
则f(π/4)=2sin(π/2+θ+π/3)=2sin(θ+5π/6)