求定积分:f(-a,a)(x^2-x)*根号下(a^2-x^2)dx

1个回答

  • [-a,a] ∫ (x²-x)√(a²-x²) dx

    =[-a,a] ∫ x²√(a²-x²) dx - [-a,a] ∫ x√(a²-x²) dx (后半部分是奇函数,在对称区间的定积分为零)

    =[0,a] 2 ∫ x²√(a²-x²) dx

    =[0,a] 2 ∫ (a²-a²+x²)√(a²-x²) dx

    =[0,a] 2 ∫ a²√(a²-x²) - (a²-x²)^(3/2) dx

    = a²x√(a²-x²)+ a^4 arctan[x/√(a²-x²)] - ¼ x(5a²-2x²)√(a²-x²) - ¾ a^4 arctan[x/√(a²-x²)] | [0,a]

    =¼ (2x²-a²)x√(a²-x²)+¼ a^4 arctan[x/√(a²-x²)] | [0,a]

    =(x→a)lim¼ a^4 arctan[x/√(a²-x²)]

    =(u→π/2)lim¼ u a^4 (令 x=asinu,则arctan[x/√(a²-x²)]=u)

    =(πa^4)/8