当然有.
原函数=∫e^x (1-cos2x)/2dx
=0.5[e^x- ∫e^xcos2xdx]
再求e^xcos2x的原函数,用分部积分法.
I=∫e^xcos2xdx
=e^xcos2x+∫2e^xsin2xdx
=e^xcos2x+2[e^xsin2x-∫2e^xcos2xdx]
=e^xcos2x+2e^xsin2x-4I
得:I=e^x(cos2x+2sin2x)/5
因此原函数=0.5[e^x-e^x(cos2x+2sin2x)/5]+C
当然有.
原函数=∫e^x (1-cos2x)/2dx
=0.5[e^x- ∫e^xcos2xdx]
再求e^xcos2x的原函数,用分部积分法.
I=∫e^xcos2xdx
=e^xcos2x+∫2e^xsin2xdx
=e^xcos2x+2[e^xsin2x-∫2e^xcos2xdx]
=e^xcos2x+2e^xsin2x-4I
得:I=e^x(cos2x+2sin2x)/5
因此原函数=0.5[e^x-e^x(cos2x+2sin2x)/5]+C