∵弦AB的倾斜角为α,且过焦点F
∴设弦AB的方程为:y=tanα(x-p/2)
∵抛物线方程为y^2=2px(p>0)
消去y:tan²α(x-p/2)²=2px
tan²α(x²-px+p²/4)-2px=0
tan²α*x²-(tan²α+2)px+p²·tan²α/4=0
设b=tan²α(为了好看,又方便)
根据弦长公式|AB|=[√(1+k²)·√△]/a 其中K为直线方程的斜率,A为消去Y后方程的x²前的系数,
△=[(b+2)·p]²-4b·p²·b/4
=b²p²+4p²+4bp²-b²p²
=4p²(1+b)
∴|AB|=[√(1+tan²α)·√(1+tan²α)·4p²]/tan²α
=2p·(1+tan²α)/tan²α
=2p·[(sin²α+cos²α)/cos²α]·cos²α/sin²α
=2p/sinα^2