看看通项
(1/n)/[(1+1/2)(1+1/3)…(1+1/n)]=(1/n)/[(3/2)*(4/3)*…*(n+1)/n]=(1/n)/[(n+1)/2]=2/[n(n+1)]=2[1/n-1/(n+1)]
故,原式=2(1/2-1/3)+2(1/3-1/4)+…+2(1/99-1/100)=2(1/2-1/100)=49/50
看看通项
(1/n)/[(1+1/2)(1+1/3)…(1+1/n)]=(1/n)/[(3/2)*(4/3)*…*(n+1)/n]=(1/n)/[(n+1)/2]=2/[n(n+1)]=2[1/n-1/(n+1)]
故,原式=2(1/2-1/3)+2(1/3-1/4)+…+2(1/99-1/100)=2(1/2-1/100)=49/50