原式=∫(secx)^2dx/[3+4(tanx)^2]
=∫d(tanx)/[3+4(tanx)^2]
令u=tanx,
原式=∫du/(3+4u^2)
=(1/3)∫du/(4u^2/3+1)
=(1/3)∫d ( 2u/√3)/[(2u/√3)^2+1]
=(√3/2)/3)arctan(2u/√3)+C
=√3/6arctan(2tanx/√3)+C.
原式=∫(secx)^2dx/[3+4(tanx)^2]
=∫d(tanx)/[3+4(tanx)^2]
令u=tanx,
原式=∫du/(3+4u^2)
=(1/3)∫du/(4u^2/3+1)
=(1/3)∫d ( 2u/√3)/[(2u/√3)^2+1]
=(√3/2)/3)arctan(2u/√3)+C
=√3/6arctan(2tanx/√3)+C.