首先在子弹射入后:设系统的角速度为:ω
则由能量守恒:mgl+Mgl/2=(J1+J2)ω^2/2,
其中:J1为匀质细棒的转动惯量:J1=Ml^2/3,J2为子弹相对与O点的转动惯量:J2=ml^2
ω^2=(2mgl+Mgl)/(J1+J2)
ω^2=3(2mgl+Mgl)/(Ml^2+3ml^2),
ω=√3(2mgl+Mgl)/(Ml^2+3ml^2),代数式:3(2mgl+Mgl)/(Ml^2+3ml^2)在根号下面
在竖直瞬间,细棒、小球受到的合力矩为零,系统角动量守恒.
J2v0/l=(J1+J2)ω
v0=(J1+J2)lω/J2
=l(√(2mgl+Mgl)(Ml^2+3ml^2))/3ml^2
其中:代数式:(2mgl+Mgl)(Ml^2+3ml^2)在根号下,代数式:3ml^2为分母