1+2+3+……+n=n(n+1)/2
所以,1/(1+2+3+……+n)=2/[n*(n+1)]=2*[(1/n)-(1/n+1)]
所以,原式=2*[(1/2)-(1/3)]+2*[(1/3)-(1/4)]+……+2*[(1/1996)-(1/1997)]
=2*[(1/2)-(1/3)+(1/3)-(1/4)+……+(1/1996)-(1/1997)]
=2*[(1/2)-(1/1997)]
=1-(2/1997)
=1995/1997.
1+2+3+……+n=n(n+1)/2
所以,1/(1+2+3+……+n)=2/[n*(n+1)]=2*[(1/n)-(1/n+1)]
所以,原式=2*[(1/2)-(1/3)]+2*[(1/3)-(1/4)]+……+2*[(1/1996)-(1/1997)]
=2*[(1/2)-(1/3)+(1/3)-(1/4)+……+(1/1996)-(1/1997)]
=2*[(1/2)-(1/1997)]
=1-(2/1997)
=1995/1997.