(1)相切.
证明:连接OE,BE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴BE⊥AC,
∴在Rt△BEC中,点D是BC边的中点,
∴DE=BD=CD=
1
2 BC,
∴∠3=∠4,
∵∠ABC=90°,OB=OE,
∴∠1=∠2,∠1+∠4=90°,
∴∠2+∠3=90°,
∴DE⊥OE,
∴DE是⊙O的切线;
(2)∵∠AEO+∠2=90°,∠2+∠3=90°,
∴∠AEO=∠3,
∵OA=OE,
∴∠A=∠AEO,
∵∠3=∠4,
∴∠AEO=∠4,
∴△AEO ∽ △EBD,
∴
OA
DE =
AE
BE ,
设AE=x,则BE=
AB 2 - AE 2 =
64- x 2 ,
∴
4
3 =
x
64- x 2 ,
∴x=6.4.
∴AE=6.4.
1年前
10