两圆相交于点A和点B,由点A作两圆的切线,分别与两圆相交于M和N,直线BM和BN分别与两圆交与点P、点Q,求证MP=NQ

1个回答

  • 连接AP、AB、AQ、MQ

    ∵AN、AM是切线

    ∴∠NAB=∠AMB,∠MAB=∠ANB

    ∴∠ABQ=∠ANB+∠NAB=∠AMB+∠MAB

    ∴∠AMQ=∠ABQ=∠AMB+∠MAB

    ∵∠AQB=∠AMB.∠MQB=∠MAB

    ∴∠AQM=∠AQB+∠MQB=∠AMB+∠MAB

    ∴∠AMQ=∠AQM

    ∴AM=AQ

    ∵∠APB=∠ANB即∠APM=∠ANQ

    ∠AGB=∠AMB即∠AQN=∠AMP

    ∴△APM≌△ANQ(AAS)

    ∴MP=NQ