连接AP、AB、AQ、MQ
∵AN、AM是切线
∴∠NAB=∠AMB,∠MAB=∠ANB
∴∠ABQ=∠ANB+∠NAB=∠AMB+∠MAB
∴∠AMQ=∠ABQ=∠AMB+∠MAB
∵∠AQB=∠AMB.∠MQB=∠MAB
∴∠AQM=∠AQB+∠MQB=∠AMB+∠MAB
∴∠AMQ=∠AQM
∴AM=AQ
∵∠APB=∠ANB即∠APM=∠ANQ
∠AGB=∠AMB即∠AQN=∠AMP
∴△APM≌△ANQ(AAS)
∴MP=NQ
连接AP、AB、AQ、MQ
∵AN、AM是切线
∴∠NAB=∠AMB,∠MAB=∠ANB
∴∠ABQ=∠ANB+∠NAB=∠AMB+∠MAB
∴∠AMQ=∠ABQ=∠AMB+∠MAB
∵∠AQB=∠AMB.∠MQB=∠MAB
∴∠AQM=∠AQB+∠MQB=∠AMB+∠MAB
∴∠AMQ=∠AQM
∴AM=AQ
∵∠APB=∠ANB即∠APM=∠ANQ
∠AGB=∠AMB即∠AQN=∠AMP
∴△APM≌△ANQ(AAS)
∴MP=NQ