(4)=1/2∫(0,3) e^(x^2) d(x^2)
=1/2 e^(x^2) |(0,3)
=1/2e^9 -1/2
(5)=∫(0,1) (1-x)dx+∫(1,2) (x-1)dx
=(x-x^2/2) |(0,1) +(x^2/2 -x)|(1,2)
=1/2 +1/2
=1
(6)=2∫(0,π/2) sinxdx
=-2cosx|(0,π/2)
=0-(-2)
=2
(4)=1/2∫(0,3) e^(x^2) d(x^2)
=1/2 e^(x^2) |(0,3)
=1/2e^9 -1/2
(5)=∫(0,1) (1-x)dx+∫(1,2) (x-1)dx
=(x-x^2/2) |(0,1) +(x^2/2 -x)|(1,2)
=1/2 +1/2
=1
(6)=2∫(0,π/2) sinxdx
=-2cosx|(0,π/2)
=0-(-2)
=2