柯西不等式
[x1^2(x1+x2)+x2^2(x2+x3)+x3^2(x1+x3)]
*[(x1+x2)+(x2+x3)+(x1+x3)]
>=[根号(x1^2(x1+x2)*(x1+x2))+根号(x2^2(x2+x3)*(x2+x3))+根号(x3^2(x3+x1)*(x3+x1))]^2
=[x1+x2+x3]^2=1
而(x1+x2)+(x2+x3)+(x1+x3)=2(x1+x2+x3)=2
所以
x1^2(x1+x2)+x2^2(x2+x3)+x3^2(x1+x3)≥12
等号成立时,
x1^2(x1+x2)(x1+x2)=x2^2(x2+x3)(x2+x3)=x3^2(x3+x1)(x3+x1)
可得x1=x2=x3=1/3