证明:
n=1时,n+1=2
(2^1)*1=2,等式成立.
假设当n=k(k为自然数,且k>=1)时等式成立.
即
(k+1)(k+2)...(k+k)=(2^k)*1*3*...*(2k-1)
则当n=k+1时,
(k+1+1)(k+1+2)...(k+1+k-1)(k+1+k)(k+1+k+1)
=(k+2)(k+3)...(k+k)(2k+1)(2k+2)
=(k+1)(k+2)...(k+k)(2k+1)(2k+2)/(k+1)
=(k+1)(k+2)...(k+k)(2k+1)2
=(2^k)*1*3*...*(2k-1)*(2k+1)*2
=[2^(k+1)]*1*3*...*[2(k+1)-1]
等式也成立.
综上,(n+1)(n+2)(n+3)+.+(n+n)=(2^n)*1*3*.(2n-1)
等式成立.