用数学归纳法证明:(n+1)(n+2)(n+3)+.+(n+n)=(2^n)*1*3*.(2n-1),从K到K+1,左端

4个回答

  • 证明:

    n=1时,n+1=2

    (2^1)*1=2,等式成立.

    假设当n=k(k为自然数,且k>=1)时等式成立.

    (k+1)(k+2)...(k+k)=(2^k)*1*3*...*(2k-1)

    则当n=k+1时,

    (k+1+1)(k+1+2)...(k+1+k-1)(k+1+k)(k+1+k+1)

    =(k+2)(k+3)...(k+k)(2k+1)(2k+2)

    =(k+1)(k+2)...(k+k)(2k+1)(2k+2)/(k+1)

    =(k+1)(k+2)...(k+k)(2k+1)2

    =(2^k)*1*3*...*(2k-1)*(2k+1)*2

    =[2^(k+1)]*1*3*...*[2(k+1)-1]

    等式也成立.

    综上,(n+1)(n+2)(n+3)+.+(n+n)=(2^n)*1*3*.(2n-1)

    等式成立.