用余弦定理啊!
(2a+c)cosB+bcosC=0
所以
(2a+c)(a^2+c^2-b^2)/2ac +b(a^2+b^2-c^2)/2ab=0
整理,有:
(a^2+c^2-b^2)/c +[(a^2+c^2-b^2)+(a^2+b^2-c^2)]/2a=0
所以
(a^2+c^2-b^2)/c +a=0
所以
(a^2+c^2-b^2)/(2ca)= -1/2=cosB
又因为B是三角形内角
所以∠B=120度
用余弦定理啊!
(2a+c)cosB+bcosC=0
所以
(2a+c)(a^2+c^2-b^2)/2ac +b(a^2+b^2-c^2)/2ab=0
整理,有:
(a^2+c^2-b^2)/c +[(a^2+c^2-b^2)+(a^2+b^2-c^2)]/2a=0
所以
(a^2+c^2-b^2)/c +a=0
所以
(a^2+c^2-b^2)/(2ca)= -1/2=cosB
又因为B是三角形内角
所以∠B=120度