原式=[(x²-x-2)/(x²-x-6)]÷[(x²+x-6)/(x²+x-2)]
=[(x-2)(x+1)]/[(x-3)(x+2)] ÷[(x-2)(x+3)]/[(x-1)(x+2)]
=[(x-2)(x+1)]/[(x-3)(x+2)] ×[(x-1)(x+2)]/[(x-2)(x+3)]
=[(x+1)(x-1)]/[(x+3)(x-3)]
原式=[(x²-x-2)/(x²-x-6)]÷[(x²+x-6)/(x²+x-2)]
=[(x-2)(x+1)]/[(x-3)(x+2)] ÷[(x-2)(x+3)]/[(x-1)(x+2)]
=[(x-2)(x+1)]/[(x-3)(x+2)] ×[(x-1)(x+2)]/[(x-2)(x+3)]
=[(x+1)(x-1)]/[(x+3)(x-3)]