f(π/6)=sin(ωπ/6+π/3),f(π/4)=sin(ωπ/4+π/3),sin(ωπ/6+π/3)=sin(ωπ/4+π/3),ωπ/6+π/3=ωπ/4+π/3,ωπ/6+π/3=π-ωπ/4-π/3,解得:ω=0,ω=4/5,取ω=4/5,f(x)在区间(π/6,π/4)有最大值无最小值.
已知函数f(x)=sin(ωx+π/3),f(π/6)=f(π/4),且f(x)在区间(π/6,π/4)有最小值无最大值
1个回答
相关问题
-
已知函数f(x)=sin(ωx+π/3),f(π/6)=f(π/3),且f(x)在区间(π/6,π/3)有最小值无最大值
-
已知函数f(x)=sin(ωx+π3)(ω>0),若f(π6)=f(π3)且f(x)在区间(π6,π3)上有最小值,无最
-
已知函数f(x)=sin(ωx+π3)(ω>0),若f(π6)=f(π3)且f(x)在区间(π6,π3)上有最小值,无最
-
已知函数f(x)=sin(ωx+π3)(ω>0),若f(π6)=f(π3)且f(x)在区间(π6,π3)上有最小值,无最
-
已知函数f(x)=sin(ωx+π3)(ω>0),若f(π6)=f(π3)且f(x)在区间(π6,π3)上有最小值,无最
-
已知函数f(x)=sin(ωx+π3)(ω>0),若f(π6)=f(π3)且f(x)在区间(π6,π3)上有最小值,无最
-
已知函数f(x)=sin(ωx+π3)(ω>0),若f(π6)=f(π3)且f(x)在区间(π6,π3)上有最小值,无最
-
已知函数f(x)=sin(ωx+π3)(ω>0),若f(π6)=f(π3)且f(x)在区间(π6,π3)上有最小值,无最
-
已知f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/2),且f(x)在区间(π/6,π/2)有最大值,
-
已知函数f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/2),且f(x)在区间(π/6,π/2)无最小