用数字0,1,2,3,4,5组成没有重复数字的四位数.

1个回答

  • 解题思路:(1)可以先排列首位,0不能放在首位共有5种结果,后面三位只要在余下的5个数字上选3个排列.

    (2)组成不同的四位偶数有两种情况,当0在个位的四位偶数有A53个,当0不在个位时,先从2,4中选一个放在个位,再从余下的四个数选一个放在首位,应有A21A41A42,相加得到结果.

    (3)各位数字之和是3的倍数能被3整除,符合题意的有:一类:含0、3则需1、4 和2、5各取1个,可组成C21C21C31A33;二类:含0或3中一个均不适合题意;三类:不含0,3,由1、2、4、5可组成A44个,相加得到结果.

    (1)可以先排列首位,0不能放在首位共有5种结果,

    后面三位只要在余下的5个数字上选3个排列.

    共有5A53=300;

    (2)组成不同的四位偶数有两种情况,

    当0在个位的四位偶数有A53个,

    当0不在个位时,先从2,4中选一个放在个位,再从余下的四个数选一个放在首位,应有A21A41A42

    共有A53+A21A41A42=156

    (3)各位数字之和是3的倍数能被3整除,符合题意的有:

    一类:含0、3则需1、4 和2、5各取1个,可组成C21C21C31A33

    二类:含0或3中一个均不适合题意;

    三类:不含0,3,由1、2、4、5可组成A44个,

    共有C21C21C31A33+A44=96个

    点评:

    本题考点: 排列、组合的实际应用.

    考点点评: 本题考查排列组合的实际应用,本题是一个数字问题,解题的关键是注意0不能在首位,注意分类和分步的应用.