证明:过E点做DH⊥AC
∵AE平分∠BAC EB⊥AB
根据角平分线定理
∴BE=EF
设bc=a
AC=√2a
AO=√2/2 a
EC=√2EH=√2BE
EC+BE=BC
(1+√2)BE=a
BE=(√2-1)a=HC
AH=AC-HC=a
∵正方形的对角线互相垂直平分
∴OF‖EH
∴AO/AH=OF/EH
√2/2 a /a =OF/√2/2EC
OF/EC=√2/2*√2/2=1/2
EC=2FO
证明:过E点做DH⊥AC
∵AE平分∠BAC EB⊥AB
根据角平分线定理
∴BE=EF
设bc=a
AC=√2a
AO=√2/2 a
EC=√2EH=√2BE
EC+BE=BC
(1+√2)BE=a
BE=(√2-1)a=HC
AH=AC-HC=a
∵正方形的对角线互相垂直平分
∴OF‖EH
∴AO/AH=OF/EH
√2/2 a /a =OF/√2/2EC
OF/EC=√2/2*√2/2=1/2
EC=2FO