如图,△ABC中,∠C=90°,AC=8cm,BC=4cm,移动点P从C出发沿着CB方向以1cm/s的速度运动?

1个回答

  • 题1:本题关键是求得△PCQ的面积表达式(为表达方便记为S2,△ABC的面积记为S1)

    S1 = (1/2) × AC × BC = 1/2 × 8 × 4 = 16 cm²

    S2 = (1/2) × CP × CQ = 1/2 × CP × (AC - AQ) = 1/2 × (1×t) × (8 - 2×t) = - t² + 4t

    (1) 由 S2 = (1/4) × S1 可得

    - t² + 4t = (1/4) × 16 = 4

    即 t² - 4t + 4 = 0

    得到两同根,t = 2,即当 t = 2s时,△PCQ的面积是三角形ABC的四分之一.

    (2)与(1)类似,可设 t 秒后△PCQ的面积为△面积的一半,即S2 = (1/2) × S1 可得

    - t² + 4t = (1/2) × 16 = 8

    即 t² - 4t + 8 = 0

    因判别式 △ = b² - 4ac = 16 - 4 × 8 = -16 < 0

    则上述方程无实根,因此,△PCQ的面积不可能为△面积的一半.