平面内,四条线段AB,BC,CD,DA首尾顺次连接,角ABC=24度,角ADC=42度

3个回答

  • ⑴∠BAD和∠BCD的角平分线交于点M(如图1),求∠AMC的大小;

    1/2∠BAD+∠ABC=1/2∠BCD+ ∠AMC

    1/2∠BCD+∠ADC=1/2∠BAD+∠AMC

    两式相加得:2∠AMC=∠ABC+∠ADC

    2∠AMC=24°+ 42°

    ∠AMC=33°

    两式相减得:∠BAD-∠BCD=∠ADC-∠ABC=42-24=18°

    ⑵ 点E在BA的延长线上,∠DAE的平分线和∠BCD的平分线交于点N(如图2),则∠ANC =______.

    ∠ANC+1/2∠BCD=∠ABC+∠BAD+1/2∠DAE

    因为∠BAD+∠DAE=180°

    1/2∠DAE=90°-1/2∠BAD

    所以∠ANC+1/2∠BCD=∠ABC+∠BAD+90°-1/2∠BAD

    2∠ANC=2∠ABC+2×90°+∠BAD-∠BCD

    2∠ANC=2×24°+2×90°+18°

    ∠ANC=123°