S(2n)-Sn=[1/2+1/3+1/4+.+1/(n+1)+1/(n+2)+.+1/(2n+1)]-[1/2+1/3+1/4+.+1/(n+1)]
=1/(n+2)+.+1/(2n+1)
设bn=S(2n)-S(n)
则 b(n+1)-b(n)=[1/(n+3)+1/(n+4)+.+1/(2n+1)+1/(2n+2)]+1/(2n+3)-[1/(n+2)+1/(n+3)+.+1/(2n+1)]
=1/(2n+2)+1/(2n+3)-1/(n+2)
>0
∴ {bn}是递增的
则{bn}的最小值是b1
即 b1>m/16