3名志愿者在10月1号至10月5号期间参加工作.

4个回答

  • 我给你解答一下,先说明下C(m,n)意思是说从m个数里选n个数的组合数.P(m,n)意思是说从m个数里选n个数的排列数

    (1)若每名志愿者在这5天中任选一天参加社区服务工作,这个的总事件数(也就是分母)为:

    C(5,1)*C(5,1)*C(5,1)

    而3名志愿者恰好连续3天参加社区服务工作设为A的话,A的可能性只能是这3连续的三天为123,234,345这三种情况,而在123这三天时3名志愿者谁1,谁2,谁3,这个有排列问题,则为

    P(3,3),234 345这俩种情况同理

    则最终答案:

    P(A)=(P(3,3)+P(3,3)+P(3,3))/C(5,1)*C(5,1)*C(5,1)

    =3P(3,3)/C(5,1)^3= 18/125

    (2)先列出§所有可能的数值为0,1,2,3

    每名志愿者在这5天中任选两天参加社区服务工作,则总事件数为:

    C(5,2)*C(5,2)*C(5,2)=C(5,2)^3

    P(§=0)=C(4,2)^3/C(5,2)^3=216/1000

    我解释下这个式子,分母不用说了,就是总事件数,分子:既然10月1号§=0,则没有认识人在这天社区服务,则他们都是从另外4天里选了2天工作,所以都是C(4,2),因为只有3个人都分配完才算完事,所以是三次方.

    P(§=1)=(C(3,1)*C(4,1))C(4,2)^2

    /C(5,2)^3=432/1000

    说明下分子:有一人在10月1号工作,则要从三人中选出这个人来C(3,1),然后被选出的这个人要在另一天也要工作,然后再在另外4天中选出一天来,则是C(3,1)*C(4,1).这一个人才被分配完,另外2个人要从那4天里随便选2天工作.所以就有了这个分子.

    P(§=2)=(C(3,2)*C(4,1)*C(4,1)) C(4,2)/C(5,2)^3=288/1000

    说明下分子,§=2则要有2人在10月1日工作,先选出这2个人C(3,2),然后他们一样也得在令4天选出一天工作,剩下选第3个人C(4,2)

    P(§=3)=1-216/1000-432/1000-288/1000

    =64/1000

    这里,我都没给你约分,为了看着方便,不过考试时你必须得约下分.

    谢谢!