f为(a,b)的凸函数证明f的两个单侧导数f'+(x)和f'-(x)在(a,b)的任意子闭区间[c,d]上黎曼可积且 f

2个回答

  • 定理:f为(a,b)的凸函数,则其左右导数f'{-},f'{+}

    存在,且

    1.f'{-},f'{+}递减.

    2.f'{-}(c)≥f'{+}(c)

    3.c,d∈(a,b),则

    f'{+}(c)≥[f(d)-f(c)]/[d-c]≥f'{-}(d)

    1.

    由于f'{-},f'{+}递减.

    只需研究

    In=(d-c)/n∑{0≤k≤n-1}f'{+}(c+k(d-c)/n)和

    Jn=(d-c)/n∑{0≤k≤n-1}f'{-}(c+k(d-c)/n)的极限.

    2.In≤Jn.(定理的2.)

    3.由定理的3.得

    In≥[(d-c)/n]*

    ∑{0≤k≤n-1}[f(c+(k+1)(d-c)/n)-f(c+k(d-c)/n)]/[(d-c)/n]=

    =f(d)-f(c)

    4.由定理的3.得

    Jn≤[(d-c)/n]f'{-}(c)+[(d-c)/n]*

    ∑{1≤k≤n-1}[f(c+k(d-c)/n)-f(c+(k-1)(d-c)/n)]/[(d-c)/n]=

    =[(d-c)/n]f'{-}(c)+f(d-(d-c)/n)-f(c)

    5.由f的连续性得,

    Lim{n→∞}{[(d-c)/n]f'{-}(c)+f(d-(d-c)/n)-f(c)}=

    =f(d)-f(c)

    所以

    Lim{n→∞}In=Lim{n→∞}Jn=f(d)-f(c)

    ==>f'{-},f'{+}黎曼可积,且

    ∫{c→d}f'{-}(x)dx=∫{c→d}f'{+}(x)dx=f(d)-f(c).