设M坐标为(x0,y0),
根据双曲线函数,y=√3/x,
A(0,m),
B(m,0),
y0=√3/x,
∴M(x0,√3/x0)
D(x1,y1),
y1=-x1+m,
x1=x0,
y1=-x0+m,
∴D(x0,-x0+m),
C(x2,y2),
y2=-x2+m
y2=y0=√3/x0,
x2=m-y2=m-√3/x0,
∴C(m-√3/x0,√3/x0),
AD=√[(x0-0)^2+(-x0+m-m)^2]=√2m,
BC=√[(m-m+√3/x0)^2+(0-√3/x0)^2]
=√(3/x0^2+3/x0^2)
=√6/x0,
∴|AD|*|BC|= √2m*√6/m
=2√3.