解题思路:根据旋转的性质得出∠ABF=∠C,求出∠ABC=∠C=30°,即可判断①;根据三角形外角性质求出∠ADC=∠BAE,根据相似三角形的判定即可判断②;求出∠EAC大于30°,而∠DAE=30°,即可判断③;求出△AFD是直角三角形,但是不能推出是等腰三角形,即可判断④.
∵在△ABC中,AB=AC,∠BAC=120°,
∴∠ABC=∠C=30°,
∵将△AEC绕点A顺时针旋转120°后,得到△AFB,
∴△AEC≌△AFB,
∴∠ABF=∠C=30°,
∴∠FBD=30°+30°=60°,∴①正确;
∵∠ABC=∠DAE=30°,
∴∠ABC+∠BAD=∠DAE+∠BAD,
即∠ADC=∠BAE,
∵∠ABC=∠C,
∴△ABE∽△DCA,∴②正确;
∵∠C=∠ABC=∠DAE=30°,∠BAC=120°,
∴∠BAD+∠EAC=120°-∠DAE=90°,
∴∠ABC+∠BAD<90°,
∴∠ADC<90°,
∴∠DAC>60°,
∴∠EAC>30°,
即∠DAE≠∠EAC,∴③错误;
∵将△AEC绕点A顺时针旋转120°后,得到△AFB,
∴AF=AE,∠EAC=∠BAF,
∵∠BAC=120°,∠DAE=30°,
∴∠BAD+∠EAC=90°,
∴∠DAB+∠BAF=90°,
即△AFD是直角三角形,
∵在△DAE中,∠ADE=∠BAC+∠BAD,∠AED=∠C+∠EAC,∠ABC=∠C,但是根据已知不能推出∠BAD=∠EAC,
∴∠ADE和∠AED不相等,
∴AD和AE不相等,
即△AFD是直角三角形,但是不一定是等腰三角形,∴④错误;
故选B.
点评:
本题考点: 相似三角形的判定与性质;等腰直角三角形;旋转的性质.
考点点评: 本题考查了旋转的性质,等腰三角形的性质和判定,三角形的外角性质,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力,题目比较典型,但是有一定的难度.