解题思路:根据三角形内角和定理求出∠ABC=∠ACB=72°,根据角平分线求出∠ABD=∠DBC=∠ACE=∠ECB=36°,根据三角形内角和定理求出∠BDC、∠BEC、∠EOB、∠DOC,根据等腰三角形的判定推出即可.
∵AB=AC,∠A=36°,
∴∠ABC=∠ACB=[1/2](180°-∠A)=72°,
∵BD,CE是角平分线,
∴∠ABD=∠DBC=[1/2]∠ABC=36°,∠ACE=∠ECB=36°,
∴∠A=∠ABD=∠ACE,∠DBC=∠ECB,
∴∠BDC=180°-∠ACB-∠DBC=180°-72°-36°=72°,
同理∠BEC=72°,
∴∠BDC=∠ACB,∠BEC=∠EBC,
∴∠EOB=180°-∠BEC-∠EBD=180°-72°-36°=72°,
同理∠DOC=72°,
∴∠BEO=∠BOE,∠CDO=∠COD,
即等腰三角形有△OBC,△ADB,△AEC,△BEC,△BDC,△ABC,△EBO,△DCO,共8个,
故选A.
点评:
本题考点: 等腰三角形的判定与性质.
考点点评: 本题考查了等腰三角形的性质和判定,角平分线定义,三角形内角和定理的应用,关键是能求出各个角的度数.