一道概率论的问题具体问题是:甲乙二人轮流射击,直到某人集中目标为止.已知甲击中目标的概率为0.6,乙击中目标的概率为0.

1个回答

  • 设X、Y、Z分别代表目标被击中时总的射击次数、甲射击次数、乙射击次数.

    X=1,2,3,4.

    Y=1,2,3,4,.

    Z=0,1,2,3,4.

    P(X=1)=0.6,P(X=2)=0.4*0.5,

    P(X=3)=0.4*0.5*0.6,P(X=4)=0.4*0.5*0.4*0.5,

    P(X=5)=0.4*0.5*0.4*0.5*0.6,P(X=6)=0.4*0.5*0.4*0.5*0.4*0.5

    .

    可以总结出X的分布律为

    X为奇数时,P(X=2k-1)=0.6*(0.4*0.5)^(k-1)=0.6*0.2^(k-1)

    X为偶数时,P(X=2k)=(0.4*0.5)^k=0.2^k

    k=1,2,3,4,5,.

    Y的分布律为:

    P(Y=k)=P(X=2k-1)+P(X=2k)=0.6*0.2^(k-1)+0.2^k

    k=1,2,3,4,.

    Z的分布律为

    P(Z=k)=P(X=2k)+P(X=2k+1)=0.2^k+0.6*0.2^k=1.6*0.2^k

    P(Z=0)=0.6

    k=1,2,3,4,.

    解毕.